skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whittle, Andrew_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In this article, we formulate a computational large‐deformation‐plasticity (LDP) periporomechanics (PPM) paradigm through a multiplicative decomposition of the deformation gradient following the notion of an intermediate stress‐free configuration. PPM is a nonlocal meshless formulation of poromechanics for deformable porous media through integral equations in which a porous material is represented by mixed material points with nonlocal poromechanical interactions. Advanced constitutive models can be readily integrated within the PPM framework. In this paper, we implement a linearly elastoplastic model with Drucker–Prager yield and post‐peak strain softening (loss of cohesion). This is accomplished using the multiplicative decomposition of the nonlocal deformation gradient and the return mapping algorithm for LDP. The paper presents a series of numerical examples that illustrate the capabilities of PPM to simulate the development of shear bands, large plastic deformations, and progressive slope failure mechanisms. We also demonstrate that the PPM results are robust and stable to the material point density (grid spacing). We illustrate the complex retrogressive failure observed in sensitive St. Monique clay that was triggered by toe erosion. The PPM analysis captures the distribution of horst and graben structures that were observed in the failed clay mass. 
    more » « less